
  

AFRL-IF-RS-TR-2005-296 
Final Technical Report 
August 2005 
 
 
 
 
 
 
OPTIMIZED PARALLEL DISCRETE EVENT 
SIMULATION (PDES) FOR HIGH PERFORMANCE 
COMPUTING (HPC) CLUSTERS 
  
SUNY at Binghamton 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 

 



  

STINFO FINAL REPORT 
 
 
 This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS).  At NTIS it will be releasable to the general public, 
including foreign nations. 
 
 
 AFRL-IF-RS-TR-2005-296 has been reviewed and is approved for publication. 
 
 
 
 
 
 
 
APPROVED:         /s/ 
 

JAMES P. HANNA 
Project Engineer 

 
 
 
 
 
 
 FOR THE DIRECTOR:           /s/ 
 

JAMES A. COLLINS, Acting Chief 
 Advanced Computing Division 
Information Directorate 

 
 
 
 
 
 
 
 



  

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 074-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302, 
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE
AUGUST 2005

3. REPORT TYPE AND DATES COVERED 
Final  Feb 04 – Jan 05 

4. TITLE AND SUBTITLE 
OPTIMIZED PARALLEL DISCRETE EVENT SIMULATION (PDES) FOR 
HIGH PERFORMANCE COMPUTING (HPC) CLUSTERS 
 

6. AUTHOR(S) 
Nael Abu-Ghazaleh 
 
  

5.  FUNDING NUMBERS 
C     - FA8750-04-1-0054 
PE   -   
PR   - PDES
TA   - HP 
WU  - C4 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
SUNY at Binghamton 
4400 Vestal Parkway East 
Binghamton New York 13902-6000 
 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
 

N/A 

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Air Force Research Laboratory/IFTC 
26 Electronic Parkway 
Rome New York 13441-4514 

10. SPONSORING / MONITORING 
      AGENCY REPORT NUMBER 
 

AFRL-IF-RS-TR-2005-296 
 

11. SUPPLEMENTARY NOTES 
 
AFRL Project Engineer:  James P. Hanna/IFTC/(315) 330-3473/ James. Hanna@rl.af.mil 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 

12b. DISTRIBUTION CODE 
 
 

13. ABSTRACT (Maximum 200 Words) 
The aim of this project was to study the communication subsystem performance of state of the art optimistic simulator 
Synchronous Parallel Environment for Emulation and Discrete-Event Simulation (SPEEDES) and explore approaches 
for accelerating it.  The primary focus has been on system level improvements; specifically, a primary goal was to 
explore the performance of the simulator on a cluster with a Myrinet network.  Myrinet provides several features 
conducive to the success of parallel simulation:  it provides a high bandwidth, low latency network, with user level 
network protocol (avoiding the Operating System overhead) and provides some processing on the network interface 
card to reduce the load on the host processor.  In addition, algorithmic improvements to the communication susbsystem 
were considered.  
 

15. NUMBER OF PAGES
16

14. SUBJECT TERMS  
Myrinet, SPEEDES, Symmetric Multiprocessors, Simulation Engine, High Performance 
Network, Parallel Discrete Event Simulation, Sockets-GM 16. PRICE CODE

17. SECURITY CLASSIFICATION 
     OF REPORT 
 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
     OF THIS PAGE 
 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
     OF ABSTRACT 
 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 
 
 

UL
NSN 7540-01-280-5500   Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Std. Z39-18 
298-102 



 

  

 

i

 
TABLE OF CONTENTS 

 
 
1. INTRODUCTION............................................................................................................................... 1 

2. BACKGROUND AND RELATED WORK ..................................................................................... 2 
2.1 PARALLEL DISCRETE EVENT SIMULATION ........................................................................................... 2 
2.2  HETEROGENEOUS HIGH PERFORMANCE COMPUTING (HHPC) CLUSTER............................................. 3 

3. COMMUNICATION SUBSYSTEM DEVELOPMENT EFFORT ............................................... 4 
3.1. SPEEDES-MPI DEVELOPMENT EFFORT...................................................................................... 4 
3.2. GM/SOCKETS DEVELOPMENT EFFORT.......................................................................................... 5 

3.2.1. Experiences in Using and Debugging the GM-Sockets library .............................................. 5 
3.2.2. Integrating SPEEDES with RAW GM .................................................................................... 7 

4. PERFORMANCE EVALUATION WITH MPI ON ETHERNET AND MYRINET .................. 9 

5. CONCLUDING REMARKS ........................................................................................................... 11 

REFERENCES ........................................................................................................................................... 12 
 
 

LIST OF FIGURES 
 
FIGURE 1: THE PERFORMANCE OF THE FIXEDSPEEDUP_64D BENCHMARK ..................................................... 9 
FIGURE 2: EFFECT OF LIMITING OPTIMISM ON THE TWO MPI IMPLEMENTATIONS.......................................... 10 
 

 

 

 

 



 

  

 

1

1. Introduction 
 
Simulation is a critical capability at the heart of several Air Force and DoD applications; 
for example, it is used for model analysis, war-gaming, and complex system design and 
analysis.  Increasing the performance and the capacity of simulation has considerable 
implications on the success of these applications – more complex scenarios can be 
analyzed in more detail to provide more accurate results in a shorter time.  Parallel 
Discrete Event Simulation (PDES), which leverages the power of parallel processing, can 
significantly improve the performance and capacity of simulation.  However, PDES falls 
short on delivering such performance because of its fine-grained and dynamic nature due 
to the complex dependencies between the simulation processes.  This is especially true in 
cluster environments where the cost of communication is more expensive than 
Symmetric Multiprocessors or custom parallel machines.  Since clusters provide an 
overwhelming cost-to-performance solution point, developing effective solutions to 
PDES and other fine-grained/dynamic applications for them will provide a valuable 
capability to the Air Force and significantly improve its simulation capabilities. 
 
Fine grained and dynamic applications such as Parallel Discrete Event Simulation 
[Fujimoto 1990, Metron] present a challenge to clusters. Their fine grained nature makes 
simulation communication bounds for many models; since the cost of communication is 
significantly higher than computation; frequent communication limits the performance 
and scalability of fine-grained applications.  The existing implementation of SPEEDES1 
uses a centralized server; all communication occurs first to this server and then to the 
destination.  While this organization has several desirable qualities (such as simplifying 
external interfacing to the simulation, and providing a logical point for implementing 
group communication operations), it significantly increases the communication cost 
(already a major bottleneck), and reduces the scalability of the simulation.  In previous 
work, we had implemented an all to all version of this library that allows many direct 
event messages (but not group communication messages) to be exchanged directly 
between the simulation nodes.  However, significant opportunities remain to improving 
this critical portion of the simulation engine.  Exploring this space is a long term goal of 
our research. 
 
In this project, we attempted to address the communication latency problem by taking 
advantage of the Myrinet high performance network from Myricom [Myrinet].  At the 
onset of the project, none of the available communication libraries for using Myrinet 
provided acceptable performance.  In particular, the GM-sockets library which 
implements Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) 
sockets abstraction for Myrinet provided surprisingly poor performance.  Using the native 
sockets library on top of GM (the inefficient existing operating system  
                                                 
1 SPEEDES is a state-of-the-art parallel simulator from Metron, Inc [Metron].  It is based on Jeff 
Steinman’s work at Caltech, and employs an innovative synchronization model (Breathing Time Warp) and 
checkpointing model [Steinman 1993].  It is in use in several DoD, and especially Air Force, projects. 
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sockets implementation is used, requiring operating system mode switch and several 
buffer copies) yielded only small improvements over the regular sockets over Gigabit 
Ethernet implementation.  Finally, the Message Passing Library (MPI), which has an 
implementation for Myrinet was a possible avenue.  However, Metron had stopped 
supporting the MPI version of SPEEDES and the old distribution was no longer 
operational.  Thus, no options existed for taking advantage of the Myrinet network for 
simulation.  Providing such an option was a primary goal of this project. 
 
The remainder of this report is organized as follows.  Section 2 describes Parallel 
Discrete Event Simulation and the SPEEDES simulator in more detail.  It also describes 
the target cluster used in the experiments. Section 3 describes the development and 
implementation effort undertaken throughout this project.  Section 4 presents a 
performance study of the SPEEDES simulator with MPI for Ethernet and Myrinet using a 
Benchmark from the Distributed Information Enterprise Modeling and Simulation 
(DIEMS) Joint Battlespace Infosphere (JBI) project.  Finally, Section 5 presents some 
concluding remarks. 
 

2. Background and Related Work 
 
In this section we first overview PDES, and the motivation for more effective fine-
grained communication and self-monitoring and adaptation.  We then describe the HHPC 
environment in more detail. 

2.1 Parallel Discrete Event Simulation 
 
In Discrete Event Simulation (DES), a model starts with an initial state and an initial 
number of scheduled events.  Events are ordered by simulation time in an event queue.  
Simulation proceeds by processing the earliest event, which can cause changes in the 
simulation state and schedule for one or more future events.  The simulation time 
advances to the time of the earliest unprocessed event.  Simulation terminates when there 
are no more events to process or when a predetermined simulation time is reached. 
 
 Parallel Discrete Event Simulation (PDES) leverages parallel processing to attempt to 
accelerate the performance and capacity of DES.  The simulation model is partitioned 
across multiple simulation processes (called Logical Processes, or LPs).  Each LP 
maintains a local event queue and carries out simulation as described above (repeatedly 
processing the earliest time stamp event).  A locally processed event may generate events 
to remote LPs (that is, these events may cause changes to the state managed by the 
remote LP).  Thus, LPs communicate by exchanging time-stamped event messages 
[Jefferson-83]. Correct simulation requires that all events be processed in time-stamp 
order.  Therefore, a synchronization model is needed to ensure that remote events are 
processed in time-stamp order. 
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Conservative PDES simulators carry out synchronization as follows: an LP, LPi, does not 
process an event until it is guaranteed that no other LP will generate a remote event 
destined to LPi with a time stamp earlier than the current earliest event.  Thus, explicit 
time step synchronization of the LPs is needed, severely limiting the potential event 
processing concurrency.  Alternatively, optimistic PDES simulation (the so-called Time-
Warp model [Fujimoto-90]) does not require explicit synchronization among LPs.  Each 
LP enforces causal ordering on local events (by processing them in time-stamp order).  
Causality is preserved on remote events by detecting causality errors (when a straggler 
event with a time-stamp in the past is received) and recovering from them by rolling-back 
the simulation to a state prior to the time of the straggler event.  Thus, each simulator 
must maintain state and event histories in order to enable recovery from straggler events.  
This state information must be garbage collected to control memory usage and enhance 
the simulator locality; a Global Virtual Time (GVT) algorithm is used to detect the global 
progress time of the simulation, allowing the garbage collection of histories earlier than 
this time.  We use the SPEEDES simulation environment [Metron] in our studies; 
SPEEDES is a state of the art PDES simulator that uses Breathing Time Warp (an 
optimistic simulator that bounds optimism to attempt to control excessive rollbacks) 
[Steinman 1993].  SPEEDES is used in several projects in the Air Force and DoD. 
 
The performance of PDES is heavily influenced by the message exchange latency: PDES 
is fine-grained, with event messages generated frequently (depending on the model) to 
remote LPs.  Delays in receiving these messages can cause the simulation to be erroneous 
at remote LPs (since the event message will be received after the simulator has moved 
past it).  It has been shown that improving the performance of the communication 
subsystem results in significant improvement in the simulation performance (e.g., 
[Chetlur98, Sharma99, AbuGhazaleh04]). Furthermore, slow message exchange causes 
GVT estimates to be slow, limiting the available concurrency in Breathing Time Warp 
and reducing the efficiency of garbage collection (increasing the simulator memory 
footprint and worsening the average memory access time). 
 
In addition, the simulation behavior is dynamic and unpredictable.  There are several 
parameters that configure the simulation and the sub-algorithms used in it (for example, 
several parameters are used in Breathing Time Warp to control the degree of tolerated 
optimism); a suitable configuration depends on the current model behavior and can have 
a large effect on the simulation performance.  Moreover, the model partitioning affects 
the resulting remote dependencies and can also significantly influence performance.  
Furthermore, the dependencies in the model can evolve dynamically (for example, as 
objects move away from initial close objects and closer to other objects).  Thus, effective 
configuration and partitioning is necessary both initially and dynamically during run time 
(although this is beyond the scope of this project). 

2.2  Heterogeneous High Performance Computing (HHPC) Cluster 
 
HHPC is a Beowulf cluster made of commercial off the shelf personal computers 
(featuring dual processor Xeon’s) interconnected via a Gigabit Ethernet Network and a 
Myrinet network [Boden 1995].  In addition, each node has an Annapolis Micro Devices 
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(AMD) Wildstar II FPGA board on the Peripheral Component Interconnect (PCI) bus.  
The Wildstar has a Xilinx Virtex II FPGA, some DRAM and SRAM banks and an LVDS 
I/O card.  We use the I/O card to interconnect the Field Programmable Gate-Arrays 
(FPGAs) directly to each other using a custom built all-to-all serial board.  This board 
provides connectivity from every node to every other node concurrently using a dedicated 
serial line.  This results in a low-latency but low-bandwidth communication channel 
among the FPGAs.  Without this connectivity, all communication must go through the 
communication fabric at a latency ranging from around 10 microseconds (for the 
expensive Myrinet) to several 10s of microseconds for the commodity Gigabit Ethernet. 
 

3. Communication Subsystem Development Effort 
 
A major component of the development effort went to attempting to address the 
performance problems observed in the GM-sockets library.  Unfortunately, this effort 
was not successful – the available library was unstable and bug ridden (functional as well 
as performance bugs).  Several features in the library are not implemented.  Finally, 
Myricom has stopped supporting this library and moved to alternative libraries that are 
not compatible with the version of the network hardware we have available to us.  We 
detail these efforts in Subsection 3.2.    The other component of the effort targeted the 
MPI library support for SPEEDES.  This effort was successful (described in Subsection 
3.1), and led to a version of the simulator that uses the Myrinet network.  Moreover, the 
MPI implementation for Ethernet is a possibly useful byproduct of this effort. 
 

3.1. SPEEDES-MPI Development Effort 
 
Earlier versions of SPEEDES used MPI.  However, Metron developed a sockets 
implementation and decided to stop supporting the MPI implementation.  Efforts to 
discuss this implementation with them were unfruitful.  The distributed code from an old 
version of SPEEDES was not operational, causing the simulation to fail or to freeze.  The 
effort in this component of the work consisted of studying and understanding the old MPI 
communication library, interfacing it with the current version of SPEEDES and 
debugging the problems preventing it from operating correctly.  We discovered and 
corrected several problems in this process.  Some problems were due to the fact that the 
SPEEDES code changed, and no longer interfaced correctly with this old 
implementation.  In addition, we discovered several significant errors in the 
implementation.  For example, one error caused some messages to be consumed by the 
library  (without getting delivered to the simulator).  This caused some event messages to  
be lost and led to erroneous simulation (and simulation failures sometimes), as well as 
deadlock if the lost message was part of a blocking operation.  Another error caused 
partial receive of some messages, leading to immediate failure of the simulation.  
 
A limitation of the implementation (only with Ethernet) is that the mpirun script fails to 
pass the working directory correctly to SPEEDES.  This results in the simulation starting 
in the top directory on other machines.  Thus, to collect the results, I had to run from the 
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top directory.  Because the use of MPI was limited to go through the SUN grid engine 
and the system-wide installation of MPI, I was not able to investigate changes to the 
script.   
 
Another minor limitation of both versions is that the MPI_Finalize exits the processes 
sometimes before the remote stdio files have finished writing (if extremely large volume 
outputs are generated at the end).  This problem was faced only with the 
FixedSpeedup_64D benchmark which writes over 1 Megabytes of data as it is exiting.  
This problem can be worked around either by delaying the call to MPI_Finalize, or by 
writing the output more incrementally or to files. 
 

3.2. GM/sockets development Effort 
 
We attempted several approaches to reach a working and efficient implementation of 
sockets over GM.  Our initial experiments with the GM-sockets library showed extremely 
poor performance (lower than that of regular sockets over GM, and even poorer than 
sockets over Ethernet).  In addition, on standard micro-benchmarks such as netperf, 
several benchmarks failed (crashing, or getting stuck indefinitely).  Finally, there were 
significant problems in getting SPEEDES to compile, and eventually, run correctly with 
this library.   
 
The progression of our efforts is as follows.  At first, we attempted to fix the problems 
with the GM-sockets library; because of the effort required to develop a communication 
library from scratch, this appeared as the path of least resistance.  Furthermore, we were 
encouraged because the library (some versions) is implemented completely in user space, 
making development easier.  This part of the work took a significant amount of effort; we 
discovered several bugs and performance bottlenecks then reported them to Myrinet. 
They moved to a new version during development, and then had further releases based on 
the problems we discovered.   Finally, they recommended that we move to their new 
libraries which require GM-2 and/or the MX libraries, and are not compatible with our 
older generation hardware.  As a result, we attempted to bypass the GM-sockets library 
completely by interfacing SPEEDES with GM.  However, after implementing a basic 
subset of the communication calls, we found that we required reimplementation of most 
of the sockets library functionality which was a larger task than our available resources.  
In the following section, we report on our efforts in more detail, and present an 
evaluation result with simple microbenchmarks of the different approaches we attempted. 

 

3.2.1. Experiences in Using and Debugging the GM-Sockets library 
 
GM-sockets is a user level library for implementing sockets on top of the GM message 
library (the low-level message passing abstraction for accessing the Myrinet network).  
Theoretically, it should provide significant improvements over regular sockets on top of 
GM (where regular TCP/IP processing occurs, and then the myrinet device is accessed as 
an Ethernet device via an Ethernet emulation layer).  The advantages occur for the 
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following reasons. Much of the sockets library functionality can be discarded or 
simplified (e.g., congestion control and checksums) because the underlying Myrinet 
network handles this functionality in hardware.  Furthermore, buffer copies can be 
reduced because the library operates from user space, and the packet can be dispatched 
directly from user space to the device.  Finally, the overhead of switching over to the O/S 
is avoided.   As a result, latencies in the order of 10 microseconds can be expected, 
compared to 100 microseconds or more for Ethernet.  Another advantage occurs because 
some of the message processing occurs on the LANAI card, freeing the host processor to 
focus on its primary computation. 
 
 GM-sockets had three different ways of mapping the socket calls to raw GM calls: the 
kernel module, the dynamic user level library, and the static user level library 
implementations.  The dynamic user level library implementation did not work from the 
start; we were advised at that point to use the static library instead.  According to the 
functionality of this library, it was supposed to provide a seamless integration of the 
socket calls with the underlying GM. However, the examples given showed no 
performance improvement using this library (in fact, performance degradation resulted in 
many cases).  Using the netperf microbenchmark suite, the results were worse than 
regular sockets over Ethernet in terms of bandwidth and latency; moreover, several 
examples simply failed. 
 
Sockets-GM 1.2.1 was the latest version of the library on Sep 12th 2004. When SPEEDES 
was integrated with the Sockets-GM, it was found that the program used to wait 
indefinitely. By going through the SPEEDES code, it was found that the application used 
to abruptly hang during the sendmsg() (a UDP sending API) call . It was decided 
to test Socket-GM with simple examples using sendmsg(). The simple examples failed to 
work. At this stage we started going through the Socket-GM library code. It was found 
that the library was trapping some of the socket calls, but it failed to recognize the 
sendmsg() call. Upon mailing to the Myrinet support, they advised us to use the newer 
version, Sockets-GM 1.3. The Sockets-GM 1.2.1 was an incomplete version of the 
wrapper library and did not support all the calls, which failed to run an application like 
SPEEDES which exercises many features of the sockets library. 
 
The use of Sockets-GM 1.3 on SPEEDES led to triggering of the SIGSEGV signals. The 
hostnames were not being correctly recognized by the library. Integration of SPEEDES 
with the latest version of Sockets-GM needed changes to the system configurations. 
According to the new specifications, the hostnames of all the machines had to be changed 
to reflect a new format. It was now required to have the IP address followed by the board 
number. After all these changes, we were back on square one when the SPEEDES was 
still hanging at sendmsg() call.  Later, testing simple examples and adding debug 
statements in the 
Sockets-GM 1.3 verified that sendmsg() was not being recognized by Sockets-GM 1.3 as 
in the previous version. The original sendmsg() was being called instead of the wrapper 
function present in the library, which obviously led to a send error. The receiving 
application used to wait till the sender sent the data and hence the application used to wait 
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infinitely. The Myrinet support was again consulted and they advised us to check the 
compile time warnings of Sockets-GM 1.3 which was later verified to be absent.  
 
Debugging the symbols from the library, it was later found that there was no sendmsg() 
function in the text section. However, other simple functions like send() were present in 
the text section of the library. This meant that the sendmsg() function that was called was 
never present in the library. There was a minor signature mismatch between the linux 
sendmsg() and the one declared in the Socket-GM. After altering the code of Sockets-GM 
1.3 to match the signature of the sendmsg in the linux to include file socket.h, the 
sendmsg was called but the server used to terminate with a segmentation fault. This bug 
was again transmitted to the Myrinet support team and after a couple of days, the code 
was fixed and source for the newer code (Sockets-GM-ULEVEL-1.3+1) was provided. 
 
This new release fixed the above problem but a new problem surfaced. The SPEEDES 
application was now waiting forever in the some of the recv() function calls.  It was 
found that the recv() used to hang whenever the MSG_PEEK flag was set and when the 
receive was non-blocking. Upon a non-blocking recv() call with MSG_PEEK flag set, the 
call should return a -1 with errno set to ``E AGAIN". But the Socket-GM used to block 
till there was data available on the socket. The SPEEDES application used to check the 
presence of data with non-blocking receives with MSG_PEEK set. This resulted in an 
undesirable infinite wait time. The Myrinet support team was contacted again and they 
indicated that this feature is only available in the module version of the Sockets-GM. The 
module version could not be verified because changes to the system at the root level were 
needed. 
 
The kernel module implementation needed changes to be done at the system level by the 
root.  Furthermore, it required the GM-2 library to be installed in place of the GM library 
we had on the development cluster.  However, the GM-2 library is not recommended for 
the version of Myrinet hardware that we have available on the HHPC machines.  They 
also informed us that they are not actively maintaining the GM version anymore, and 
recommended that we move to either GM-2 or the newer MX library (which also does 
not support our hardware). 

3.2.2. Integrating SPEEDES with RAW GM 
 
To avoid using the GM-sockets library, we investigated porting SPEEDES to directly use 
the GM message layer.  This effort required changes in the communication API of 
SPEEDES from using sockets to using GM calls.  The available options for this 
conversion were: 
 

1. To change all the SPEEDES socket calls to raw GM calls. 
2. To add wrapper functions that transparently convert all socket calls to the GM 

calls. 
 
Handling all the cases using the first approach required major changes and verification of 
the SPEEDES code. Moreover, several aspects required a major rewrite of the SPEEDES 
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communication support; specifically, raw GM does not implement reliable 
communication.  We elected to pursue the second approach. 
 
The periodic issues with Sockets-GM and the regular version changes were hard to track 
and debug. A thin layer of the socket-to-gm mapping API, henceforth called as sock2gm, 
was written. The plan was to replace the existing socket API calls in SPEEDES with the 
new API send and receive calls. A raw GM send and receive was written to handle 
simple send and receive. 
 
This paragraph describes the brief design of sock2gm. Instead of using socket descriptors, 
the sock2gm wrapper functions assign a unique number (called sock2gm ID) to each of 
the sock2gm sockets opened. The sock2gm ID is mapped to a GM port opened by the 
sock2gm layer. Sending and receiving can be mapped by specifying the sock2gm ID 
obtained by the opening of the sock2gm socket. The function calls were similar to the 
raw GM send and receive calls, but the necessity to keep track of the callbacks and 
waiting for events are hidden by the sock2gm API. Simple experiments with 
connectionless message passing were tested and verified. The below list describes some 
of the important functions of sock2gm API. 
 

1. sock2gm_init(): This is the initialization function that initializes GM by calling 
gm_init(). This method has to be called before any sock2gm API calls. It also 
initializes the data structures needed to maintain the mapping of sock2gm ID to 
GM port. 

2. sock2gm_open(): This method is analogous to the socket() call. It opens a GM 
port and assigns a unique sock2gm ID and returns the ID to the caller. It enables 
remote memory access to the port and sets up GM priority to the port. 

3. sock2gm_alloc(): This allocates the DMA memory to a given sock2gm ID that 
can be used by send and receive functions. 

4. sock2gm_send(): Sending the data to a target node can be invoked by calling this 
function. It resolves the mapping of sock2gm ID to the respective port and will 
send the data with callback to the target node. The function is blocking and will 
wait till the send completion event is triggered. 

5. sock2gm_receive(): This function is the counterpart for socket receive function. It 
is blocking in nature and waits till the arrival of data on the requested GM port. 

 
The work is ongoing and the future plans are to: 
 

1. Enable sock2gm API for the connection oriented calls. 
2. Enable advanced options like peeking into the buffer for checking the presence of 

message, blocking and non-blocking send and receive. 
3. The current sock2gm API hides the callback overhead from the sender and 

receiver. It would be easier to replace all the socket calls with sock2gm calls if the 
API matches the currently used socket API. 

4. The current mapping of sock2gm ID to a GM port is maintained in a linked list 
structure. It would be more efficient to use a hash table data structure. 
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The current implementation maps one sock2gm ID to a port. Mapping multiple IDs to a 
port is also desirable. 

4. Performance Evaluation with MPI on Ethernet and Myrinet 
 
The performance of the FixedSpeedup_64D benchmark using the different 
communication alternatives (sockets/Ethernet; MPI/Ethernet and MPI/GM) is shown 
in Figure 1.  The benchmark represents a JBI scenario modeled using the DIEMS JBI 
modeling and simulation environment which is layered on top of SPEEDES.  We 
used the best performing configuration we found for the sockets implementation, 
Breathing Time Warp with (Ngvt=1000, Nrisk=500, Nopt=1000), against a typical 
configuration for the MPI versions with (Breathing Time Warp with Ngvt=2000, 
Nrisk=4000, and Nopt=8000).  We simulated other configurations: the two MPI 
versions appeared most stable to changes in the configuration and could tolerate 
aggressive GVT computation.  The same did not hold true for the sockets version 
whose performance degraded quickly both for high optimism cases (the extra delay 
causing additional rollbacks), as well as when optimism was bounded closer (due to 
the extra delay required by the additional GVT computations). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The performance of the FixedSpeedup_64D Benchmark 
 

In this base implementation, the MPI version significantly outperforms the sockets 
version on Ethernet (for example, requiring nearly half the time for 4 processor and 8 
processor configurations).  Likewise, the MPI GM version was considerably faster than 
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the MPI Ethernet version (by a factor of 40% to 100%).  As a result, the MPI GM version 
was between 2 to 4 times faster than the base sockets over the Ethernet version for this 
benchmark. 
 
In the second study, we evaluated the effect of increasing the impact of communication 
latency on the performance of MPI with and without GM.  In this study, we kept the 
model the same, but increased the frequency of carrying out GVT by reducing the Ngvt, 
and Nrisk parameters.  Thus, the faster the GVT computation, the faster can the whole 
simulation advance.  
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Figure 2: Effect of limiting optimism on the two MPI implementations 
 
The results for this study are shown in Figure 2.  In this figure, the frequency of GVT 
computation, as well as the number of optimistically processed events (both Nrisk and 
Nopt), was varied in lockstep (all were changed to the same value).  In general, 
depending on the model and the communication latency, there is a level of optimism that 
will yield effective performance (ignoring load balancing issues).  At this level, the 
optimistic computation is most often correct.  If optimism is increased significantly 
beyond this point, one would expect the performance to suffer as more events are likely 
to be processed erroneously.  In our model, the application is quite tolerant to optimism 
(it has high look-ahead, meaning that the remotely generated events occur far enough in 
the future to allow time for them to be received).  In other models that have less 
overhead, the simulation may not tolerate high optimism and will require more frequent 
GVT computation to increase its efficiency.   
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To study the effect of communication latency and to simulate applications that do not 
have high look ahead, we varied the degree of optimism for the two MPI 
implementations.  The primary observation here is that the GM version could gracefully 
tolerate really aggressive GVT computation (up to once every 15 events) with little 
degradation in performance.  Conversely, the Ethernet version starts to slow down 
significantly at GVT period of a few hundred events.  This bodes well for other 
applications that do not have the relaxed look ahead requirement as does this one. 
 
A final observed advantage for the MPICH-GM version is the amount of time spent in 
startup (this time is not included in the analysis above).  Because the Ethernet network is 
a shared medium that is also used to connect the machines to the shared filesystem, the 
communication traffic has to contend with the filesystem traffic for access to the network.  
This effect is most noticeable at the simulation startup when the different nodes have to 
copy over the large executables through the Ethernet interface, essentially one at a time.  
In contrast, the myrinet network allows concurrent pipelined sends of these executables 
and results in a noticeably faster startup time for the simulation  (less than one second, 
compared to 10+ seconds for Ethernet in a 16 node run).   

5. Concluding Remarks 
  
The primary goal of this work was to develop a communication subsystem for SPEEDES 
that enables it to capitalize on the performance opportunity afforded by the Myrinet 
network infrastructure.  While our initial plan to carry out this project by addressing the 
performance problems in the GM-sockets library, for many reasons we were not able to 
reach the goal via that path.  Instead, we upgraded and debugged existing MPI support 
that was not functional and was no longer supported by Metron.  With a working MPI 
version, we were able to use the Myrinet network via the mature MPICH-GM library 
available for it. This led to a working prototype, that shows significant performance 
advantages on the benchmark that we studied. 
 
A lesson learned from this effort is that the GM-sockets library for past generation GM-1 
based Myrinet hardware is not fully compliant with the sockets library and suffer from 
functional and performance issues.  Moreover, it appears that the vendors have stopped 
attempting to address these limitations and have focused their efforts (understandably) on 
support for their newer lines of products.  Unfortunately, this has led to our inability to 
generate a working prototype with the incomplete and buggy libraries available for our 
legacy 3-4 year old system. 
 
We did not present the low level microbenchmark evaluation of this library (we have 
these results); surprisingly, these results do not show a dramatic advantage for Myrinet 
over Gigabit Ethernet (while this could be expected in terms of bandwidth, it appears that 
the gap is closing in terms of latency as well).  Similar results were observed at the 
application level by other researchers (e.g., Myrinet was found to achieve only 5% 
performance improvements on the NAS benchmark [Majumder 2004]). With 10-Gig 
Ethernet becoming available, its unclear whether custom built networks such as Myrinet 
will continue to play a big role in the cluster computing arena. 
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Finally, a personal lesson learned is that it is difficult to pull students to a research area 
quite different from theirs and expect that they will be productive immediately.  It took 
me a good 6 months time to train the students to the point where they became truly 
capable of conducting the work and able to work their way past difficult problems.  In a 
project whose lifetime was 1 year, this had a major impact on the outcome of our GM-
sockets effort. 
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